Na een hack verdwenen alle posts van onze site. Ik haal er af en toe eentje weer op, van het Internet Archive.
Op 30 december 2015 fietste ik met mijn vrouw langs de opbouw van het vreugdevuur op het strand bij Duindorp. We waren niet de enige en dat is logisch. Wat een onvoorstelbaar bouwwerk. Jongens met korte haren en zwarte truien werken zich de longen uit het lijf om de alle pallets naar boven te krijgen. Waar in de voorgaande jaren vaak een trap van pallets werd gebouwd om de boel naar boven te krijgen, werd er nu gewerkt met liften waar telkens een paar jongens mee naar boven reisden om de paleis aan te geven aan de jongens bovenop. Uit een keet verder klinkt harde “hakmuziek” en er branden een paar vuurtjes om de stapel heen. Een stuk of honderd mensen (zoals wij) staan naar dit spektakel te kijken. Er is sprake van een stevige sponsoring (lokale bedrijven vaak).
In Scheveningen wordt er ook een gebouwd en in lokale sociale media wordt de strijd wie het hoogste komt breed uitgemeten. Uiteindelijk wint Duindorp. Uiteindelijke hoogte: 33,80 meter. Scheveningen komt niet verder dan 33,25 m (een verschil van een laag van vier pallets). Om precies 0.00 uur op 01-01-2016 worden beide vuren aangestoken.
Na korte tijd staat de stapel in vuur en vlam en is het nog lang feest rondom de toren. Ik lag om een uur of een in bed (na een drukke verjaardag) maar kon niet direct de slaap vatten. En wat ik dan vaak doe is rekenen. Ik had, toen ik bij de stapel stond, al gezegd in een tweet dat ik een som zag bij het aanschouwen van de stapel.
Ik voel dan ook n som in me opkomen. Hoeveel warmte komt hier vrij? Mag er een ordegrootte naast zitten #vreugdevuur pic.twitter.com/Rg6VJTK4Ro
— Arjan van der Meij (@arjanvandermeij) December 30, 2015
Door mijn geweldige collega Tom Kooij werd ik binnen een paar minuten op mijn wenken bediend:
@arjanvandermeij 1e2 x 1e2 pallets x 10 kg x 1e7 J/kg = 1e12 Joule. 1 terrajoule. Brandtijd 1e4 s. Vermogen dus ongeveer 100 MW. Wow!
— Tom Kooij (@tomkooij) December 30, 2015
Alles in ordegroottes dus er was voor mij nog wel iets te rekenen over. Met de iPad in de hand ging ik aan de slag. Nu, rustig zittend achter de computer, doe ik dit nog eens wat preciezer. Wellicht ook aardig voor de mensen die in de eerste nacht van het nieuwe jaar iets anders aan het doen waren.
Eerst ben ik op zoek gegaan naar de afmetingen en de massa van een pallet. Dat was snel gevonden.1,20 bij 0,80 m groot en 0,144 m hoog. Gemiddeld massa: 25 kg. Dat was een mooi begin.
De stapel is niet rechthoekig maar loopt wat taps toe. Ik schatte in de nacht in dat het gemiddeld aantal pallets aan een zijde vijftien was. Ik doe dat nu iets nauwkeuriger. Ik neem de laag die hiernaast aangegeven staat met de rode pijl als gemiddelde laag. Nadat ik weg was zijn er nog een boel lagen pallets opgelegd dus ik denk dat dat wel klopt.
Van deze laag tel ik het aantal pallets naast elkaar. Zie het plaatjes hieronder.

Het is nog niet gemakkelijk te zien maar het zijn er volgens mij dertien. Dat betekent dat er op een laag gemiddeld 169 liggen. Het totaal aantal berekenen is daarna niet meer zo moeilijk. De totale hoogte is bekend: 33,80 m. Dus om het aantal lagen pallets uit te rekenen hoef ik slechts de totale hoogte, officieel vastgesteld op 33,80 m te delen door de hoogte van één pallet (0,144 m): 33,80/0,144 = 235. Er zijn dus ongeveer 235×169=39715 pallets opgestapeld. Voor het gemak ga ik verder met 40.000 pallets. Meteen de eerste conclusie: dit is best een dure aangelegenheid: de goedkoopste, C keus, 3e keus, pallets kosten vanaf 90 stuks: €4,00 per stuk. Dus deze stapel kost zo’n €150.000.
Hoeveel energie leveren al deze pallets bij elkaar, als je ze verbrandt? Om dit te kunnen uitrekenen, hebben we de verbrandingswarmte van hout nodig. Die kun je op internet vinden maar verschilt nogal, tussen de 10 en de 20 MJ/kg. Ik gebruik hier de laagste waarde (lager dan in mijn tweets) omdat daar rekening gehouden wordt met een het feit dat er geen volledige verbranding plaatsvindt, dus dat het rendement laag is. Dus 10 MJ/kg.
De totale houtmassa (een kleine deel van de massa wordt natuurlijk gevormd door de ijzeren spijkers maar dat verwaarloos ik) is 40.000 x 25 = 1.000.000 kg (1000 ton). Deze leveren dan 1.000.000 x 10 = 10.000.000 (tien miljoen) MJ. Dat is dus 1·10¹³ J. Dat lijkt veel maar is dat ook zo? Mijn leerlingen leer ik ook dat je pas kunt zeggen of iets veel, groot, klein of snel o.i.d. is, als je het vergelijkt met een bekende waarde. De waarde waarmee ik het ga vergelijken is de de hoeveelheid energie die een normaal gezin verbruikt in een jaar.
Op deze site staat dat een gezin met twee kinderen gemiddeld per jaar 4600 kWh elektrische energie gebruikt en 1720 m³ gas verstookt. De (netto) verbrandingswarmte van Gronings aardgas is 32 MJ/m³. Dus dat betekent dat er 1720 x 32 = 55.040 MJ per gezin aan aardgas wordt gebruikt. 1 kWh komt overeen met 3,6 MJ, dus het elektriciteitsverbruik per gezin per jaar is 4600 x 3,6 = 16.650 MJ. Bij elkaar is dit dus 71.600 MJ = 7,16·10¹⁰ J per gezin per jaar.
Kijk. Dit betekent dat er dus 1·10¹³/7,16·10¹⁰ = 140 gezinnen een jaar lang hun huishouden kunnen runnen van de energie die vrijkomt bij de verbranding van deze houtstapel. Dat is best veel (wel minder dan de 750 die ik in de nieuwjaarsnacht uitrekende maar toch).
Het is ook nog interessant om eens te kijken naar het vermogen: de hoeveelheid energie die per tijdseenheid vrijkomt. Om hier iets over te kunnen zeggen, moet ik weten hoe lang deze stapel brandt. Ik keek de volgende ochtend om een uur of tien. Het vuur was (min of meer) uit en er werd al opgeruimd. Ik heb even gezocht en vond een tweet met een foto waarop te zien is dat hij al redelijk aan zijn eind kwam. Ik ga uit van een brandduur van ongeveer vier uur. Het vermogen is dan makkelijk uit te rekenen: 1·10¹³/(4 x 3600) = 7·10⁸ W, dus zo’n 700 MW. Dit is een verbijsterend vermogen! In de ordegrootte van een energiecentrale. Kijk maar eens naar deze lijst.
Korte samenvatting:
- Ongeveer 40.000 pallets worden er gebruikt.
- De totale balletmassa: 1.000.000 kg
- Kosten pallets: €150.000
- Hoeveelheid energie die vrijkomt: 140 x de energie die een gezin verstookt in een jaar
- Vermogen: 700 MW.
Indrukwekkende getallen, zeker ook als je bedenkt dat het vreugdevuur in Scheveningen ongeveer even groot is. Bij mijn eerste tweets werden hier ook wat vraagtekens bij gezet. En dat begrijp ik. Het is veel energie, er komt viezigheid bij vrij en het kost een berg geld. Aan de andere kant levert het plezier op voor jongelui die wellicht anders ergens anders vreugdevuren zouden stoken. En wat kost een open haard per jaar aan hout? Er zijn ook berichten dat deze niet al te goed voor het milieu en de gezondheid zouden zijn. Zeg het maar (in de comments).







Instructable (English): here!
Eerst rekenen. En als je veel dezelfde dingen moet doen, slinger je Excel aan natuurlijk. Hoeveel rijstkorrels moeten er op elk vakje gaan liggen. Grappig genoeg loop je dan meteen tegen je eerste leermomentje aan: Excel is maar tot op 15 cijfers significant (check het plaatje hiernaast, na nummer 50 gaat het mis). Vermoedelijk is dit genoeg voor economische doeleinden waar Excel vooral voor gebruikt wordt maar voor mij onacceptabel natuurlijk. Gewone rekenmachines kunnen dit ook niet gemakkelijk, met de hand kan maar is best veel werk. Oplossing: Wolfram Alpha. Overigens staat helemaal onderaan deze tekst een tabel met mijn berekeningen. In
Daarna moest ik natuurlijk gaan bedenken hoe zwaar dit ging worden. Natuurkunde. Ik mat thuis een flink aantal rijstkorrels en zag dat de gemiddelde massa van een Surinaamse rijstkorrel die ik gebruikte 20 mg was. Makkelijk rekenen: 50 in een gram, 50.000 in een kg.
Maar wat komt dan daarna? Gewoon lege vakjes is wat saai. Maar een buis van 329 meter hoog (vakje 26, nog niet op de helft dus) lukt natuurlijk niet. “Dat is hoger dan de Eiffeltoren!” Deze gedachte was ook meteen de oplossing. Miniaturen van hoge dingen. Zo hoog als de buizen zouden reiken als ik wél zou doorbouwen. Dus, op vakje 26 komt een miniatuur Eiffeltoren. En op andere vakjes andere hoge dingen. Dingen waar miniaturen van zijn of van te maken zijn.
De Burj Kalifa (hoogste gebouw ter wereld), de Mount Everest natuurlijk en daarna het International Space Center. De maan, Mars, de zon en als laatste, heel toevallig maar bijna ontroerend toepasselijk, de Voyager. Bijna de laatste buis, de 62e, met rijst zou zo hoog zijn als de afstand van de aarde tot het door mensen gemaakte object dat het verste staat van de aarde.
Het hokje naast het hokje van 1,40 meter daar wilde ik ook graag wat op. Maar wat is 2,80 m. Uiteindelijk bedacht ik: een springende basketballer! Een Magic Johnson action figure, van E-bay is dat uiteindelijk geworden. Om het nog wat meer te verbeelden, heb ik ook wat ander, dunner buismateriaal gekocht waar rijst in kan.

Bonita haakte 21 (!) Engelse dropjes.

José kocht wel eetbare maar niet van drop gemaakte Engelse Drop: Marsepein!
Rolf ontwierp eerst in Tinkercad twee Engelse dropjes en drukte dat af op onze tweekleuren 3D-printer.
Marten tekende een bouwpakket voor papieren Engelse Drop.
Esther kleide (!) hele kleine en scherpe Engelse dropjes. Niet van echt te onderscheiden.
Twaalftallig ( “It’s counting, Jim, but not as we know it!”, zie
Je kunt dan dus op negen plekken een witte of zwarte vulling hebben. Dat betekent dat je dus 29 = 512 vierkantjes hebt. Ik wilde het graag in een vierkant plaatsen. Dat was even lastig: √(512)=22,63. Ik besloot het vierkant 23×23 te maken. Dat betekent dat ik 23×23-512=529-512=17 vierkantjes niet kon vullen.
Maar. 65.536 tegels maken. Als je er 1024 per avond maakt, ben je toch nog 64 dagen bezig! Dat moet dus anders. Gelukkig zijn binaire getallen de natuurlijke vrienden van programmeren! Dat moet dus kunnen. Nu was het alweer een tijdje geleden dat ik had geprogrammeerd en ik moest ook een programmeertaal vinden die grafisch werkt. Na een avondje zoeken en proberen, besloot ik te gaan werken met een programmeertaal waarmee ik in een ver verleden wel wat had gewerkt: PHP.
En weer, zoals altijd eigenlijk, werd ik overvallen door de kracht van programmeren. Met een paar regels code een vlak van 1793×1793 pixels vullen, precies op de manier zoals ik dat wilde, dat is welhaast magie.
Wat een feest! Ik kan er uren naar kijken. Je ziet hiernaast het eerste stukje, linksboven. Ik heb ervoor gekozen het vlakke in een zwart kader te plaatsen en tussen elke tegel een pixelbreed randje te zetten. 16×16=256 tegels. Van zo’n stukje zijn er dus nog 256. Het begint links bovenaan met een volledig zwart vakje, meteen daarnaast zie je 0000000000000001, daarnaast 0000000000000010, daarnaast 0000000000000011 etc. Rechts onderaan zie je, als je goed kijkt, 0000111100001111 (3855).
En wat nu? De afdruk is dus goed gelukt. Ik ga deze plakken op een stuk foamboard en ik hang hem in mijn lokaal. Ook ga ik hem nog eens bestellen maar dan achter plexiglas opgeplakt of op aluminium. Duur maar mooi.

